If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56c^2+31c+3=0
a = 56; b = 31; c = +3;
Δ = b2-4ac
Δ = 312-4·56·3
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(31)-17}{2*56}=\frac{-48}{112} =-3/7 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(31)+17}{2*56}=\frac{-14}{112} =-1/8 $
| 6r+2r-7r=17 | | 90+2x+19+3x+36=180 | | 16g-15g=18 | | 17g-14g=9 | | 2*(2/3x+x)=80 | | -4x-6+2=2+-2+5x | | 5(3z-6)=5(3z−6)=15 | | P-1=5p+30 | | y=306(6)+7 | | y14−4=2 | | 99x*7=1209 | | 8p-5p=18 | | x+2+3x+7+5x=180 | | -1=8b-9=39 | | 53=7c-17 | | 2(x-4)+10=-x+8 | | 7(4+b)=28 | | 90+5x+3+2x+31=180 | | 4x+8=5+14 | | -3y+14=y-+8 | | 2x-11+7x+5=13 | | -q/2-10=8 | | 2x-15+x+9=180 | | 4x-3=9x | | 1/2k+2=5+5-6k | | 3x+10=7x+26 | | 2=s/6 | | -10-x+2=-8x-8 | | 1+l=-11+4K+K | | -3=a-16 | | 3(2x+9)+x=15 | | 0=0,6x+1 |